
The Open Pitt
What's cooking in Linux and Open Source in Western Pennsylvania
Issue 36 July 2007 www.wplug.org

Author: Brian Marick
Publisher: The Pragmatic Bookshelf
ISBN: 0-9776166-1-4
$29.95, 301 pages, 2007

Ruby is a mature language with a siz-
able history behind it. It has been
only recently, largely thanks to Ruby
on Rails, that the Ruby community
has exploded and become mainstream.
Many of the hottest “Web 2.0” applic-
ations like Basecamp, Backpack, and
Twitter are built on Rails. In particu-
lar, many people have seen the 20-
minute screencast of creating a full
weblog system with Ruby on Rails.
Unlike PHP, Ruby is a general pur-
pose scripting language first, and a
web development language second.
In Everyday Scripting with Ruby, Bri-
an Marick attempts to enlighten de-
velopers on the ways that Ruby can be
used for everyday tasks and highlight
some of the best practices for Ruby
development.

As a disclaimer, I approached this
book with relatively little knowledge
of Ruby—my only previous experi-
ence was installation and some very
minor customization of a Ruby on
Rails application. For the last six
years, my primary programming lan-
guage has been Python, but I also
know and have moderate experience
with most other common program-
ming languages. In that sense, it's dif-
ficult to comment on how good of an

introduction to basic programming
concepts the book is. Instead, I'll fo-
cus on how it conveyed the Ruby lan-
guage.

The book is designed as a roughly
linear guide through the different ele-
ments of the Ruby programming lan-
guage, starting out with basic con-
cepts such as messages in Ruby (think
of methods or functions in other lan-
guages), and progressing to topics like
basic control structures, file I/O, test
harnesses, scraping web pages, and
object oriented programming.
Chapters are broken up into two dif-
ferent categories, either a general
chapter that helps explain a topic, or
“Ruby Facts” that provide a quick and
easy view of topics such as booleans,
classes, hashes, and argument lists.

The back of the book states that the
text will help developers: learn to
automate simple tasks, gain an under-
standing of utilizing finished Ruby
scripts, understand programming ter-
minology, benefit from existing code
libraries, and communicating more ef-
fectively with teammates.

For the beginning programmer and
the developer new to Ruby, the book
provides a good introduction into the
semantics of Ruby and how to utilize
code and packages from other de-
velopers through irb, an interactive in-
terpreter for Ruby, and Ruby Gems, a
shared library consisting of hundreds
of Ruby modules. The presence and

explanation of these tools makes it
much easier for beginning program-
mers to understand what is going on
and provides a very forgiving inter-
face. For example, within irb, errors
in code do not cause the interpreter to
exit; rather, the exceptions are caught
and the developer can continue to pro-
ceed, learning in a stepwise fashion
how to interact with objects in the en-
vironment.

However, while the book may be a
linear guide to picking up Ruby, and it
starts out very gracefully, it quickly
becomes apparent that it much of the
book seems pasted on top of an under-
lying structure. That structure in this
case is that the book was originally
entitled Scripting for Testers, and
sadly the change of the book to a
more general focus did not come out
as nicely as it could have. For a be-
ginning developer, a target group for
this book, the frequent discussions of
testing may be very confusing and
seem unneeded for someone who
wants to just dive in. Most of the
evidence that is provided for the needs
for testing harnesses seems to be an-
ecdotal. Perhaps, however, that's just
the scientist in me looking at the work
in the wrong way.

See RUBY, p. 2

Book Review: Everyday Scripting with Ruby by Patrick Wagstrom

Jun. 9 General User Meeting: Brian
Seklecki spoke about load balancers,
hardware devices used mainly in data
centers to distribute requests to mul-
tiple servers, such as for a web site
which receives too much traffic to be
handled by a single machine. Brian
began with a discussion of the situ-

ations in which you might need a load
balancer. He then moved into an
overview of specific types of applica-
tions like database and e-mail servers.
Additional time was dedicated to
managing persistent sessions on Web
servers. Brian finished by explaining
domain name system-related issues.

June Roundup
Coming Events

Aug. 5: 6th Annual WPLUG
Open Source Picnic. 1PM to
6PM, Snyder Park, Whitehall

Aug. 11: Installfest. 10AM to 1PM,
1507 Newell-Simon Hall, CMU

Sep. 8: General User Meeting.
(Time and location TBA, see
web site for details)
The public is welcome at all events

Page 2 The Open Pitt July 2007

RUBY, from p. 1

Despite this issue, there still are
some very strong points in the book
that can help out most developers. In
particular, the examples are very good
and are real-world situations, provid-
ing some insight on interacting with
remote websites and reading data out
of a subversion repository. In both of
these instances, however, the mechan-
ism employed to obtain the data is
rather fragile, relying on the text out-
put from the program or website.
Nonetheless, the explanation is well
done and artfully introduces concepts
as they are needed, such as the use of
regular expressions, which is always a
tricky concept.

Part of me wonders if some of the
difficulty in providing explanations in
the book is because of the structure of
the Ruby programming language.
Coming from a Python perspective,
where clear code and a standard in-
dentation style are typical, and having
a good amount of experience with
Perl, Ruby seems a little like it is a
cross between Perl and Python, but
just different enough that you can't
quite understand everything that is go-
ing on in the language. In particular,
the difference between utilizing the

results of a message and examining
the value of a variable can be difficult
to tell in the code because of shared
semantics between the two concepts.
The book is laid out very much like a
traditional programming book, but
Ruby does not seem to be as much of
a traditional language as something
like C or Java.

While the book aimed to complete
five goals, I cannot say it was excel-
lent in any particular one of the areas.
In particular, some areas such as im-
proving communication with team-
mates are only barely touched on in
the benefits of writing a test harness.
Indeed, it appears that in this case the
writer tried to make too broad of a
book in too short of space, and ended
up with book that doesn't do particu-
larly well in any of the areas.

For someone with moderate pro-
gramming experience who has a burn-
ing desire to learn Ruby, this book
may suffice, but I can't help but think
that for the average person there may
be better introductory texts or better
languages to start out with.

You can visit the book's Web site at
<http://www.pragmaticprogrammer.com/
titles/bmsft/>.
Patrick Wagstrom is a Ph.D. candidate at
Carnegie Mellon University researching
communication and collaboration in
Open Source development. He has been
using Linux since 1994.

The Open Pitt is published by
the Western Pennsylvania Linux

Users Group
<http://www.wplug.org/top/>

Editor: Vance Kochenderfer
What is Linux?

Linux is a kernel, the core of a computer oper-
ating system, created by Linus Torvalds. It is
typically packaged as a distribution, which in-
cludes the extra programs necessary to make a
computer functional and useful. Since 1991, it
has grown from a one-man project which ran
on one computer to one with thousands of con-
tributors running on everything from personal
organizers to million-dollar supercomputers.

What are Open Source and Free Software?
Open Source and Free Software provide you,
the user, with the opportunity to see the source
code of the programs you use. You are free to
use it, share it with others, and even make
changes to it if you wish. While the Free Soft-
ware and Open Source communities differ in
their philosophical approach, in practical terms
they share nearly identical goals. Learn more
at <http://www.opensource.org/>
and <http://www.gnu.org/>.

This newsletter was produced using Open
Source and Free Software.

Copyright 2007 Western Pennsylvania Linux
Users Group. Any article in this newsletter
may be reprinted elsewhere in any medium,
provided it is not changed and attribution is
given to the author and WPLUG.

WPLUG's 6th annual Open Source
Picnic will be held on Sunday, Au-
gust 5. As in recent years, we will
be at Snyder Park in Whitehall (in
the South Hills).

Please go to the WPLUG wiki
<http://wplug.ece.cmu.edu/wiki/
index.php/2007OpenSourcePicnic>
to RSVP if you plan on coming.
While you're there, why not sign up

to bring food, supplies, or organize
an activity?

Snyder Park features a covered
pavilion, playground, basketball
court, and baseball field. Count on
bringing the whole family for an af-
ternoon of friends and fun!

Complete details and directions
can be found on the wiki page. See
you there!

Annual Open Source Picnic

Many developers in the Free and
Open Source world seem averse to
thinking about licensing, considering
it too much of a political issue. But a
quick glance at the recent examples of
proprietary extensions for Joomla!
and the Broadcom wireless adapter
driver for OpenBSD should convince
you that thinking about licensing
ahead of time can help you avoid
much acrimony and pain.

If you are part of a project that ac-
cepts code from others, you need to be
sure the following points are covered:

• Ensure that the contributor has the
rights to the code being contrib-
uted. If he isn't the original au-
thor, make sure you find out the
actual origin.

• Get explicit terms for the contribu-
tion. Don't simply assume that a
patch is covered by the same li-

cense as your project.
• Make sure the license for the con-

tribution is compatible with your
project's license. Some projects
may want to go a step further and
have all contributors assign copy-
right to the project to maintain a
single point of ownership.

Be sure to do your part by including
a clear copyright statement in each
source file of the project. A note
simply saying “GPL” or “BSD” is in-
sufficient; there are multiple versions
of both of these licenses. A good ex-
ample of what a notice should look
like can be found at the end of the
GPL text.

You wouldn't drop a block of C
code into a Java program and expect it
to work; don't mix incompatible li-
censes and expect to avoid serious
headaches down the road.

From the Editor: Watch That License

