

SSH for Sysadmins

Vance Kochenderfer
���������		AB�CDEF��C�

System and Network Administrators of Pittsburgh

January 9, 2013

Things That Won't Be Covered
� Remote interactive logins

� Copying files with scp/sftp

� Password authentication

� Verifying host keys

� Implementations other than OpenSSH (PuTTY

is a popular client for Windows that also works

on Linux)
� http://www.chiark.greenend.org.uk/~sgtatham/putty/

� Setting up VPNs

� Authentication agents (ssh-agent)

What is ssh?

� A mechanism to establish a network connection

that:

� Authenticates the local user to the remote

machine

� Authenticates the remote machine to the local

user

� Is strongly encrypted

� ...this connection can carry arbitrary data

Tunneling: Local -> Remote

� �������������	ABC�D	ECFD	ECFD�BC�D

� ��������E - local address to bind to (B���B����

[the default] for loopback only, � for all interfaces)

� 	�E� - local port number to listen on

� ���� - remote host to target (does not need to be

the same machine receiving the SSH connection)

� �����	�E� - port number on remote host to target

� Note that only TCP (not UDP) is supported

Tunneling: Local -> Remote (2)

� ��������B���B���������

ssh sshd

GUI

Admin

Client

22
3306

MySQL

3306

Client Server

Encrypted tunnel

Unencrypted connection

Tunneling: Local -> Remote (3)
� ��� � ��B���B����� �

� Apache config:
����������!"����C���
��#��DC���$����!	���!��!"��
��%E��E�&BB�'(#��A
��&BB�'�"E�C�)*+F�F�F�! ���)
�!���������

ssh sshd
Web

browser

22
8080

Apache

80

Client Server

Encrypted tunnel

Unencrypted connection

visit http://localhost:8080/fooadmin

Tunneling: Local -> Remote (4)

� ���*,�C��BF�-�C	B�F��C�*,

ssh

sshd
Mail

client
2225

sendmail

25

Client Server

mail.example.com

Encrypted tunnel

Unencrypted connection

ISP firewall

blocking port 25

Note: root-level access on client needed to

bind ports < 1024

Tunneling: Remote -> Local

� �$�����������	ABC�D	ECFD	ECFD�BC�D

� ��������E - remote address to bind to

(B���B���� [the default] for loopback only, � for all

interfaces)

� 	�E� - remote port number to listen on

� ���� - host to target (does not need to be the same

machine initiating the SSH connection)

� �����	�E� - port number on target host

25

Tunneling: Remote -> Local (2)

� �$�.��*,�B���B�����*,.

ssh

sshd

send-

mail

22

Client Server

25

Internet

mailservers

Encrypted tunnel

Unencrypted connection

Note: root-level access on server needed

to bind ports < 1024

X Forwarding

Local machine

(X server)

X clients

(remote or local)

� X is an inherently network-aware protocol, but

can be a pain to set up correctly and securely

� X forwarding between two machines as easy as

adding �/ to the SSH command line (or option

0�E'�E�/))�A��)

X Forwarding (2)

� Sets up fake X server on remote host which

clients can connect to, 1#234�&5 is auto-set

� Using compression (�6 or 6�C	E�������A��)

is often helpful

� X protocol not very efficient over long distances;

something like NX, VNC, or RDP better for

frequent use

ssh sshd
server

22
:0.0 :10.0

Local Remote

X clients

SOCKS proxy (dynamic forwarding)

� �#�����������	ABC�D

� ��������E - local address to bind to (B���B����

[the default] for loopback only, � for all interfaces)

� 	�E� - local port number to listen on (1080 is IANA-

assigned port for SOCKS)

� Saves having to configure port numbers

� But, applications need to support and be

configured to use SOCKS

Public Key Authentication

� Symmetric vs. asymmetric ciphers

� Symmetric (aka shared secret): sender uses a key

to encrypt, receiver uses same key to decrypt

� Asymmetric: sender uses one key (public) to

encrypt, receiver uses a different key (private) to

decrypt

� Public and private keys are mathematically related, but

figuring out the private key is computationally hard

� OK for everyone to know the public key, but the private

key must be protected

Public Key Authentication (2)

� Security advantages

� With password authentication, plaintext password is

made known to the remote host

� Could be used to attack other systems where you've

reused the same password

� kernel.org compromise: http://lwn.net/Articles/464233/

� With public key authentication, private keys are

never transmitted to the remote host

� Even if server is compromised, attacker cannot

impersonate you

� But anyone who obtains your private key and passphrase

can

Public Key Authentication (3)

� Setting up

� Generate private/public key pair: ssh-keygen

� Set a passphrase for private key

� Except when unattended logins are needed; in such

cases, should place restriction on key

� �%�"�E�����CC���78�C�����8

� �%���DE������E���7�����FF���FD

� Copy public key to 9!F���!�D���E�:���;�A� on

target host (can use ������	A�����F���ECFD)

� OpenSSH key formats differ from other

implementations; ssh-keygen and puttygen can

convert between them

Host Configuration Options
� Specified in /etc/ssh/sshd_config
� 4�EC��$�����<��������

� A�� - allow any login method (default)

� '����D��	���'�E� - don't accept password auth*

� "�E������CC�������BA - pubkey w/�%���CC���
� �� - root cannot log in (use �D or �D��)

*This does not mean “public keys only” (more on this later)

� Why disable root password login?
� Opportunistic password guessing targets root

� 26% of attempts in http://people.clarkson.edu/~owensjp/pubs/leet08.pdf
� 50%+ of attempts on WPLUG server

� No other account gets even 5% of attempts
� Protect servers using fail2ban or denyhosts

Host Configuration Options (2)

� 4�E�������� - port to listen on (default 22)

� Not really a security measure

� ������&��E�ECFD���������FF�	BC�DA�
�	BC�D (default all local addresses)

� =������F�����C�B��CFD������FF�
������������ A

� Can set custom options when the specified

conditions are met

Host Configuration Options (3)
� Example: allow root to only log in from certain

hosts and only with public key

4�EC��$�����<���A��
=�����&��E����>)�F�F�F�!

4�EC��$�����<�����
=�����?��E�E���

4E�����B�*
@33&42&D���������������
A��������&D���������������
6��BB��<�$��	����&D���������������
4���'�E�&D���������������

Client Configuration Options

� Specified on command line with -o (e.g., ���
86�C	E���������8), ~/.ssh/config,

/etc/ssh/ssh_config

� Behavior is controlled by the first specified value

� 4E�����B, �&D������������, 4�E�,

6�	��E� same as host options

� Except that when multiple values are specified, they

are tried in order (e.g., 4E�����B�*() is different

from 4E�����B�)(*)

Client Configuration Options (2)

� 6���E�B=����E�!�F��C��F"���DC���DC�F"

� Allows multiple ssh sessions to the same host to

share a single connection

� Also specify 6���E�B4����B�DE����

� e.g., 6���E�B4����9!F���!C����E�BE�B��B)

� http://protempore.net/~calvins/howto/ssh-

connection-sharing/

Client Configuration Options (3)

� A����B�DD���

� Restricts following options (until another A��� line

is given) to hosts specified on command line

matching pattern

� Useful for making shortcuts to frequently-used

hosts

� If generic options desired, put a A����� line at end

of config file followed by option specifications

(remember, first value set for an option wins)

Client Configuration Options (4)
� Example: three hosts, plus generic options

A��������E��E
A���C�C����F�-�C	B�F��C
?��E��;������
����B0�E'�E�������B���B���������
6�C	E���������

A����	�E����B
A���C�C����C�'��E�F���
?��E������
2������A0�B��9!F���!��C�����E��
0�E'�E�/))�A��

A���������E��E
A���C�C���D��F�-�C	B�F��C
4�E�� D*
?��E�E���
2������A0�B��9!F���!'�E;����E��
3�E���A���E�A6���;��<�A��

A�����
6�C	E�������A��

Escape Character

� Gives access to some commands while connected

� Default ~, can be changed with F���	�6��E�
�E�� or disabled with F���	�6��E����� (or ��)

� Only treated specially immediately after a newline

� Some available commands

� Disconnect (.)

� Suspend ssh in background (Ctrl-Z)

� Send escape character to remote system (~)

� List available commands (?)

